1.データインポート
> score_value=c(11,11.15384615,11.56521739,10.63636364,11.13157895,10.55555556,9.833333333,9.571428571,9.838709677,7.678571429,9.176470588,7.333333333,6.909090909,10.38461538,10.69230769,11.7826087,10.72727273,11.15789474,11,9.666666667,9.214285714,9.612903226,7.607142857,8.352941176,7.333333333,7,11.38461538,11.92307692,11.7826087,10.61363636,10.57894737,10.55555556,9,9.571428571,9.387096774,7.464285714,8.352941176,8.111111111,6.545454545,10.76923077,10.61538462,11.73913043,10.40909091,10.28947368,10,9.166666667,8.285714286,9.096774194,7.035714286,7.823529412,6.555555556,6.545454545)
2.グループ作成
> group=factor(rep(c('awareness', 'decision', 'communication', 'leadership'), c(13, 13, 13, 13)))
3.検定実行
> pairwise.t.test(score_value, group, p.adjust.method='bonferroni',paired=TRUE)
結果
Pairwise comparisons using paired t tests data: score_value and group awareness communication decision communication 1.0000 - - decision 1.0000 1.0000 - leadership 0.0010 0.0227 0.0054 P value adjustment method: bonferroni
leadershipが他の要素と有意差があることがわかった。
0 件のコメント:
コメントを投稿