2019年12月25日水曜日

2019情報数学基礎(1)

情報数学基礎で利用している参考テキストを載せておきます。
[利用テキスト]
『情報数学の基礎 - 例からはじめてよくわかる』 幸谷智紀 #ブクログ
https://booklog.jp/item/1/4627052715
これがメインのテキストで、この内容に対して関連する内容が入っている書籍が下記になります。

(1) 『大学数学ほんとうに必要なのは「集合」 (BERET SCIENCE)』 大蔵陽一 #ブクログ
https://booklog.jp/item/1/4860644891
授業で説明している集合、写像に関する事柄を簡単な言葉で説明しています。
数学初心者にはおすすめです。

(2) 『新版 集合と位相 そのまま使える答えの書き方 (KS理工学専門書)』 一樂重雄 #ブクログ
https://booklog.jp/item/1/4061565575
これも初心者に読みやすい本ですが、上記の(1)と比べるとかなり数学的になります。授業に関連する内容は最初の50ページ程ですが、今後数学をしっかり学びたい人にとっては、それ以降の位相の話も大事ですので、持っていても価値があると思います。(1)を十分理解できる人には良いと思います。

(3) 『技術者のための基礎解析学 機械学習に必要な数学を本気で学ぶ』 中井悦司 #ブクログ
https://booklog.jp/item/1/4798155357
授業に関する内容は1、2章ですが、3章以降の微積分に関する内容は数学を学ぶ上で必須ですので、理工系のエンジニアを目指す人には非常に良い本です。授業の内容を理解できている人はこれを読むとどのような数学がAI分野に最低必要かが見えてくると思います。

(4) 『文系プログラマーのためのPythonで学び直す高校数学』 谷尻かおり #ブクログ
https://booklog.jp/item/1/4822295915
簡単な数学をプログラムで動かすための説明が書かれていて、楽しみながらできると思います。数学を学ぶというより、数学をどのようにプログラムで表現するかを知りたい人には良いと思います。または数学は嫌いだけど、プログラムをやってみたい人の数学への入り口にも良いかと思います。

[勉強方法アドバイス]
数学だけではないですが、僕が1冊の本(理論・技術書)を読むとき、関連した本を複数冊用意します。同じ内容を見比べていくと、理解が深まったり、理解が間違っていたことがわかったりします。複数の本を全て読むのではなく、メインの本を一冊決めて、残りのサブの本を参照しながら、メインの本の理解を深めていくようにしています。
僕の例では、メイン本1冊(英語、理論系の本)に対して、サブ:英語の本2冊、日本語の本2冊、メイン、サブ合わせて5冊くらいで読み進めています。

ちなみに英語の本を読んでいるのは、日本語が悪い訳ではなく、日本語だとすぐ読めてしまって、理解したつもりになってしまって、後で考えてみると何だったかな?と思うことが多いです。英書だとじっくり読まないと理解ができないので、僕にとってはかえって理解が深まります。もちろん英語の勉強にもなります。

0 件のコメント:

コメントを投稿